

					Pri	inted	l Pa	ge: 1	of 2	,
				Sub	ject	Co	de: l	REE	101	
Roll No:										

BTECH (SEM I) THEORY EXAMINATION 2021-22 BASIC ELECTRICAL ENGG

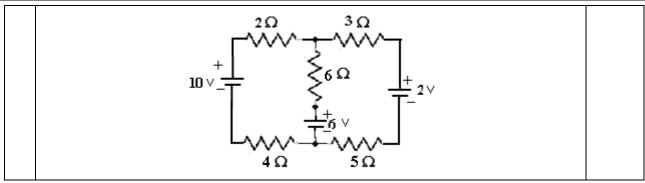
Time: 3 Hours Total Marks: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt all questions in brief. 2 x	7 = 14
a.	Compare active and passive elements with examples.	BL-2
b.	Determine the form factor and peak factor of pure sine wave voltage of 220 Volt.	BL-3
c.	Why series resonant circuit is known as acceptor circuit & parallel resonant circuit as rejecter circuit?	BL-1
d.	What the relationship between line and phase, voltage and current for a 3- Φ star connected balanced system?	BL-2
e.	What is the condition of maximum efficiency of single transformer?	BL-1
f.	Write the applications of split ring and brush in DC machines.	BL-1
g.	A 3-phase 440 V, 50 Hz induction motor has a 4% slip. What will be the frequency of the rotor current?	BL-3

SECTION B


	SECTION B	
2.	Attempt any <i>three</i> of the following: 7 x 3 =	= 21
a.	Find the current in 8Ω resistance using nodal analysis. $\begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & &$	BL-3
b.	Explain series resonance in R-L-C circuit. A series R-L-C circuit has $R=10 \Omega$, L=0.1H and C=8 μ C. Determine (i) resonant frequency (ii) Q factor of the circuit at resonance (iii) the half power frequencies.	BL-4
c.	Find the relationship between line and phase, voltage and current for a 3-Φ delta connected balanced system. A balanced 3-Phase star connected load takes 30KW at a leading current of 48A from a 3-φ source of 500V, 50Hz. Find the circuit parameters per phase.	BL-4
d.	Establish the analogy between electric circuit and magnetic circuit.	BL-5
e.	Draw and explain the torque-slip characteristics of a 3-Φ induction motor indicating	BL-4
	the starting torque, the maximum torque and operating region.	

SECTION C

3.	Attempt any <i>one</i> part of the following: $7 \times 1 =$	7
(a)	Formulate the average value, rms value & form factor and peak factor of half wave rectified alternating current having maximum value of 100 A.	BL-5
(b)	Using mesh analysis, find the current through 6 Ω resistances in the following circuit.	BL-3

				Printed Page: 2 of						
				Sub	ject	Co	de: 1	REE	101	
Roll No:										1

BTECH (SEM I) THEORY EXAMINATION 2021-22 BASIC ELECTRICAL ENGG

4. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a) State and Explain Thevenin's theorem and find the current in 40 Ω resistance in the following network using Thevenin's theorem.

BL-4

(b) Explain the causes of low power factor. What are the disadvantages of low power factor? Explain any two methods to improve the power factor.

5. Attempt any *one* part of the following: $7 \times 1 = 7$

(a) A balanced star connected load of (8 + j6) Ω per phase is connected to a balanced 3- phase, 400 V supply. Find the line current, phase current, power factor, power and total volt-ampays.
 (b) Explain the contraction details and working of a Permanent magnet moving coil PMMC instruments along with the deflecting torque and controlling torque.

6. Attempt any *one* part of the following: $7 \times 1 = 7$

(a)	Explain the working principle and emf equation of transformer.					
	A 40 KVA transformer has iron loss of 450W and full load copper loss of					
	850W. if the power factor of the load is 0.8 lagging, calculate:					
	(i) Full load efficiency	BL-4				
	(ii) The load at which the maximum efficiency occurs and					
	(iii) The maximum efficiency.					
(b)	Explain single phase auto transformer and give its advantages over two winding	BL-2				
	transformers. Mention the various applications of auto transformer.					

7. Attempt any *one* part of the following: $7 \times 1 = 7$

(a)	Why synchronous motor is not self-starting? Discuss any two methods to start the synchronous motor. What are the various applications of synchronous motor?	BL-5
(b)	(i) Why 1-Φ induction motor is not self-starting? Discuss any one method of	BL-3
	starting.	
	(ii) A 250 V dc shunt motor takes 41 A at full load. Armature resistance and shunt	
	field winding resistances are 0.1 Ω and 250 Ω respectively. Find the back emf on	
	full load.	